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performed over the temperature range of 300-700°K for the TMo10,
TMosz0, and TMose resonances. The values of the three resonant
frequencies—2.2, 4.8, and 7.4 GHz-are shifted from the empty cavity
values due to the presence of the sample. Based on the extended
method, we find that the frequency shift data at all three frequencies
yield a value of ¢’ & 5.64 & 0.05. This result is also in very close
agreement with previous measurements [8].

Equations (18) and (19) have been used to obtain ¢’ from experi-
mentally measured ) values with and without the sample. The results
are plotied in Fig. 2 along with theoretical predictions [10] based on
a model for microwave absorption that includes ionic conduction
[8], defect-complex-dipole relaxation [8] and multi-phonon quasires-
onance [11] processes. The results of the experimental measurements
and the model predictions are in excellent, consistent agreement
over a very large temperature range and for a significant range of
frequencies.

IV. CONCLUSION

The measurement method described in this paper extends the
validity of the cavity perturbation technique to larger samples and
multiple cavity modes, provided that the difference between Q.
and Qo is still negligible in comparison with the measurement
precision. This extended applicability is advantageous for determining
microwave dielectric properties of many important ionic crystalline
solids that are difficult to fabricate into very thin rods. As an
illustration, the method has been successfully used to study the
dielectric properties of NaCl crystals in the microwave frequency
regime.
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Characterization of Microstrip Discontinuities
Using Conformal Mapping and the
Finite-Difference Time-Domain Method

Sunil Kapoor and John B. Schneider

Abstract— Microstrip discontinuities are analyzed using Wheeler’s
waveguide model and the finite-difference time-domain (FDTD) method.
Wheeler’s model employs a conformal transformation to convert a mi-
crostrip into an enclosed waveguide structure. This permits the mapping
of a discontinuous microstrip into a discontinuous, but enclosed, wave-
guide. The enclosed waveguide eliminates the difficulties usually associ-
ated with analysis of an open domain geometry. The FDTD technique
is then used to calculate the scattering coefficients of the discontinuous
waveguide. The features of this approach are: 1) it yields a smaller
computational domain than that required to analyze the untransformed
geometry; 2) it yields results over a band of frequencies; and 3) it is simple
to implement. Results obtained using this scheme show good agreement
with previously published results.

I. INTRODUCTION

Many modern microwave and millimeter-wave integrated circuits
guide the transmission of energy using microstrip lines (or asymmet-
rical striplines). The passive components in these circuits are often
constructed from microstrip discontinuities. To analyze and synthe-
size microwave integrated circuits, it is essential to accurately model
the frequency-dependent properties of these discontinuities. The
frequency-dependent properties of microstrip lines, in the absence
of discontinuities, can be obtained from simple empirical formulae
that accurately describe the phase velocities and the characteristic
impedances of the fundamental and higher-order modes [1]. In the
presence of discontinuities, analysis becomes quite cumbersome and
several solution techniques have been proposed. These techniques are
based on any one of a number of methods including mode matching
[2]-[7], finite-difference time-domain (FDTD) [8]-[11], method of
moments (MoM) [12]-16], finite element method (FEM) [17], [18],
and the measured equation of invariance (MEI) [19].

All of the aforementioned techniques have inherent limitations. For
example, solutions based on mode matching can become unwieldy for
even slightly complicated geometries. MoM, FEM, and MEI solutions
can be expensive when results are desired over a broad spectrum.
Direct application of FDTD to these circuits can require the use of
a large and/or fine mesh which, in turn, requires long computation
times and large amounts of computer memory.

This paper presents a technique that is both simple to implement
and computationally inexpensive. The technique works by converting
the open microstrip structure into an enclosed waveguide using
the conformal mapping technique described by Wheeler [20], [21]
and then using the conventional FDTD technique to analyze the
discontinuities. The conformal mapping reduces the problem to
one with no stray fields which greatly reduces the size of the
computational domain. Since this is a time-domain technique, results
can be obtained over a band of frequencies via Fourier transforms.
However, since the conformal mapping is only accurate at lower
frequencies, the cost of using this simplified approach is that the
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Fig. 1. (a) Cross section of microstrip line. (b) Inhomogeneous air-dielectric
cross section of transformed line. (¢) Homogeneous waveguide model of
microstrip. The side walls of the transformed line are perfect magnetic
conductors (PMC).

results are not as broad-banded as those obtained from a direct
application of FDTD to the microstrip itself. An added cost is incurred
by the inability of the model to account for losses due to radiation or
the generation of surface waves [22]. Nevertheless, as will be shown
in Section III, accurate results can be obtain for a broad class of
structures over a moderately wide range of frequencies.

II. IMPLEMENTATION

Wheeler showed that a conformal mapping technique can be used
to transform a microstrip line into an equivalent ideal parallel-plate
waveguide if the fundamental EH mode on the microstrip line is
quasi-TEM [20], [21] (which is correct at lower frequencies [1]).
“This waveguide has no stray fields since it is bounded by perfectly
conducting magnetic side walls and perfectly conducting electric
walls on top and bottom as shown in Fig. 1. The height h of the
waveguide is identical to the thickness of the substrate material.
The conformal mapping yields an inhomogeneous air-dielectric cross
section as shown in Fig. 1(b). This inhomogeneous cross section can
be approximated by a homogeneous cross section (Fig. 1(c)) with an
effective dielectric constant e.q given by [21], [23]

Ceff =

-

(e = D)[In (2)* +1— e ln (52) (2 +094)]
26,2 [¥E ¢ 1n (2me (& +0.94))]
()

where ¢, is the permittivity of the substrate and w is the width of
the microstrip. The effective width weg of the waveguide is given
by [21], [23]

Wit = h{% + %m (27\'6(2% + 0.92))}. @)
Wheeler’s waveguide model of the discontinuous microstrip line is
not exact, but it does accurately describes the propagation of the
fundamental mode which usually plays the most significant role in
the propagation of energy. This model, when used in conjunction with
other techniques such as mode-matching [2]-[7], has provided accu-
rate descriptions of microstrip discontinuities, bends, and T-junctions.
By using a temporal technique, such as FDTD, the waveguide
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Fig. 2. Magnitude of the S11 scattering parameter as a function of frequency
for a single-step discontinuity. At 1 GHz the input line has an impedance of
50 © while the output line has an impedance of either 10 or 15 Q.

model can be used to analyze the frequency-dependent transmission
properties of the microstrip discontinuities. In this paper, FDTD is
used in conjunction with the waveguide model as given by (1) and
(2). However, the range of frequencies over which accurate results
are obtained can, in theory, be extended by analyzing the stucture
with the inhomogeneous cross section (Fig. 1(b)) rather than the one
which incorporates an effective permittivity (Fig. 1(c)).

Here, the FDTD technique is used to synthesize and measure the

" propagation of fields within the waveguide model. The computational

domain is relatively small and extends approximately one half of a
wavelength to either side of the discontinuity (here the wavelength is
assumed to be that of a 1 GHz signal). By using a pulse to illuminate
the discontinuity and measuring both the transmitted and reflected
energy, the scattering parameters of the device can be obtained over
a range of frequencies. This is accomplished by obtaining the spectral
description of the temporal signals (via fast Fourier transforms) and
then normalizing the reflected and transmitted spectra by the incident
spectrum.

The FDTD algorithm is inherently dispersive and anisotropic
and thus introduces numerical artifacts. However, these artifacts are
small if the spatial discretization is such that the principal spectral
components are resolved with at least 10 points per wavelength [24].
This limits the error in the phase velocity to less than 1%, regardless
of the direction of propagation within the grid. This accuracy in the
phase velocity, coupled with the small computational domain, insures
that the total phase error will be small. This approach has been used
for the calculation of all results presented here. To insure stability, the
discretization was chosen so that ¢4t = %A where 6t is the temporal
step size and A is the spatial step size (the step. sizes in all three
spatial directions were the same, i.e., Az = Ay = Az = A). A
TEM Gaussian pulse was used for illumination. The open ends of
the waveguide structure were terminated using the third-order Liao
absorbing boundary condition (ABC) [25]. Other effective techniques
exist for the termination of these types of computational domains
[261, [271.

III. RESULTS

Fig. 2 shows the magnitude of the Sy scattering parameters
obtained using the technique described above for two different single-
step microstrip discontinuities. At 1 GHz, the TEM impedance for
the input line is 50 Q (¢, = 2.32, h = 1.57 mm and w = 4.68
mm) while the impedance on the other side of the discontinuity is
either 10 or 15 2 (w = 3.47 cm or 2.2 cm). The results compare well
with those previously obtained using a mode matching technique [23]
(which also used the Wheeler transformation).
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Fig. 4. Magnitude of the Sy scattering parameter as a function of frequency
for a double-step discontinuity. Experimental values are from [10].

Figs. 3 and 4 show a comparison of results from the technique
presented here to experimental results previously published by Gian-
nini et al. [28] and Sheen et al. [10] for a double-step structure. The
results show excellent agreement except at higher frequencies.

Sheen et al. [10] analyzed the structure shown in Fig. 4 using a
three-dimensional FDTD method. In our implementation the code was
relatively simple in that the spatial step size in the three coordinate
directions was constant whereas in [10] different step sizes were used.
The same temporal step At = 0.441 ps was used here as was used
in [10]. Our simulation used 4096 time steps and took approximately
one and a half hours to compute on an HP9000 workstation whereas
the computation time for the full FDTD implementation of [10] was
approximately eight hours on a DEC VAXstation 3500. No attempt
was made to optimize our code and the computation time could be
reduced by using different values for Ax, Ay, and Az—a larger
step size can be used along the axis of the waveguide than used to
discretize the transverse space.

IV. CONCLUSION

This technique is relatively simple and yields accurate scatter-
ing parameters for discontinuous microstrip structures. Single- and
multiple-step discontinuities can be investigated. This approach has
a much smaller computational domain than would be necessary for
a FDTD analysis of the entire physical structure. The reduced com-
putational domain yields a corresponding reduction in computation
time. Since this is a temporal technique, the scattering parameters can
be obtained over a fairly broad spectrum using a single simulation.
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Scattering by a Thick Off-Centered
Circular Iris in Circular Waveguide

Zhongxiang Shen and Robert H. MacPhie

Abstract—A formally exact solution is described for the problems of
scattering at a junction between two circular waveguides with their axes
offset and at a thick off-centered iris in circular waveguide. The analysis
method uses Graf’s addition theorem for cylindrical functions and the
conservation of complex power technique (CCPT). Sample numerical
results are presented and compared with available data in the literature.

I. INTRODUCTION

Waveguide iris coupling has found many applications in microwave
engineering. Circular irises can be used as matching elements in
microwave circuits or in waveguide filters. The problem of a circular
iris in circular waveguide or the related step junction of two circular
waveguides has been considered by many authors. Marcuvitz [1]
gave the equivalent shunt susceptance for the T'E;; mode excitation
of small apertures. English [2] studied the mode conversion at a
symmetric step-discontinuity in circular waveguide. Scharstein and
Adams [3], [4] treated the problems of a T'Fy; mode circular wave-
guide with thin and thick circular irises. Carin et al. [5] investigated
dielectric matched windows in circular waveguide. Most of the
previously published works, however, have been limited to circular
irises concentric with the axis of the circular waveguide. Although a
simple expression of the equivalent shunt susceptance is available in
[1] for the off-centered iris in circular waveguide, the expression is
roughly approximate, and limited to the case of small aperture and
of zero-thickness.

This paper gives a formally exact solution for the problem of a thick
off-centered circular iris in circular waveguide. The conservation of
complex power technique (CCPT), which has been used to obtain
theoretically exact solutions with numerically convergent results to
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the problem of scattering at certain waveguide junctions [6], [7],
and [8], and Graf’s addition theorem for Bessel functions [9] are
employed to obtain an analytical solution for the scattering matrix of
a junction between two circular waveguides with their axes offset.
The generalized scattering matrix technique [10] is then applied to
deduce the scattering parameters of the off-centered iris in circular
waveguide. Numerical results are presented and compared with
those obtained by the approximate formula given in the Waveguide
Handbook [1].

II. FORMULATION

Fig. 1 shows the structure of a circular waveguide of radius as
loaded with an off-centered circular iris of radius a;1. (d, ) are the
polar coordinates of the center of the small circular waveguide in the
coordinate system with its origin at the center of the larger wavegnide
(as illustrated in Fig. 1). Since the CCPT was well documented in
[61, [7]. and [8], only a summary of the formulation will be given
here. The four scattering submatrices of the junction between guides
1 and 2 shown in Fig. 1 have the following form

S = (Y1 + MY M) (Y, - MY, M) (1)
Sor = M(S11 +1) @
S12 =Y 55Y> 3)
Soz = MS.1, -1 @

with Y',. for ¢ = 1 and 2, is the modal admittance matrix for the ith
waveguide [8], the superscript 7’ denotes the transpose operation, and
M is the E-field mode-matching matrix whose (nm, ki)th element
is given by

A{[nm, k1 = / (gZ‘nm M gl,kz)ds (5)
S1

where €, nm (i = 1, 2) being the normalized transverse component
of the nmth mode electric field of guide 7. which has the form as
follows

+  _EX V!, for TE modes ©
Grmm = Ves nm- for TM modes
where
' .
1h _ h Pelpm S1n (nﬂoz)
2Zz,nm“‘]Vrlrn‘]"( , )(COS(n(pz)> (7)
e _ are PeTum \ [ cos (np,)
wz,nm _Nnmjn( , )(sm(ncp,)) (8)
with

Vi = 42 : 9
: % T )® = 72T (o) ®

Ne = Je_ 1
nm T Tnmdnti(Tnm)

being normalization constants, €, = 1 for n = 0, and 2 for n > 0,
and z/,,, and snm arec. respectively, the mth zeros of Jh(x) and
Jn ().

Since the integration in (5) is over the cross section of the small
waveguide S1. we must employ a coordinate transformation between

(10)
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